JBDON
  • Home
  • Applied Analytics
    • Analytics for Decision Making >
      • What is Cluster Analysis
      • Data Reduction and Unsupervised Learning
      • Preparing Data and Measuring Dissimilarities
      • Hierarchical and k-Means Clustering
      • Defining Output Variables and Analyzing the Results
      • Using Historical Data to Model Uncertainty
      • Models with Correlated Uncertain Variables
      • Creating and Interpreting Charts
      • Using Average Values versus Simulation
      • Optimization and Decision Making
      • Formulating an Optimization Problem
      • Developing a Spreadsheet Model
      • Adding Optimization to a Spreadsheet Model
      • What-if Analysis and the Sensitivity Report
      • Evaluating Scenarios and Visualizing Results to Gain Practical Insights
      • Digital Marketing Application of Optimization
      • Advanced Models for Better Decisions
      • Business Problems with Yes/No Decisions
      • Formulation and Solution of Binary Optimization Problems
      • Metaheuristic Optimization
      • Chance Constraints and Value At Risk
      • Simulation Optimization
    • Analytics for Marketing >
      • Marketing Analytics and Customer Satisfaction
      • Customer Satisfaction
      • Measurements and Scaling Techniques – Introduction
      • Primary Scales of Measurement
      • Comparative Scaling
      • Non-Comparative Scaling
      • Experiment Design: Controlling for Experimental Errors
      • A/B Testing: Introduction
      • A/B Testing: Types of Tests
      • ANOVA – Introduction
      • Example -Inspect Spray and Tooth Growth
      • Logit Model - Binary Outome and Forecastign linear regression
      • Text Summarization
      • Social media Microscope
      • N-Gram - Frequcy Count and phase mining
      • LDA Topic Modeling
      • Machine-Learned Classification and Semantic Topic Tagging
    • Data Engine >
      • Understanding The Growth Of Data
      • Evaluating Methods Of Data Access
      • Communication journey
      • Data Journey
      • Planning for data visualisation
      • Visualisation Component
      • Content Connection and Chart Legitibility
    • Customer Insights >
      • Introduction
      • What is Descriptive Analytics?
      • Survey Overview
      • Net Promoter Score and Self-Reports
      • Survey Design
      • Passive Data Collection
      • Media Planning
      • Data Visualization
      • Causal Data Collection and Summary
      • Asking Predictive Questions
      • Regression Analysis
      • Data Set Predictions
      • Probability Models
      • Results and Predictions
      • Perspective Analytics (Maximize Revenue and Market Structure Competitions)
    • Analytics for Advance Marketing >
      • Visualisation and statistics (Political Advertising,Movie Theater and Data Assembly)
      • Excel Analysis of Motion Picture Industry Data
      • Displaying Conditional Distributions
      • Analyzing Qualitative Variables
      • Steps in Constructing Histograms
      • Common Descriptive Statistics for Quantitative Data
      • Regression-Based Modeling
      • Customer Analytics
      • Illustrating Customer Analytics in Excel
      • Customer Valuation Excel Demonstration
  • Soft Skills
    • Adaptability
    • Confidence
    • Change Management
    • Unlearning and Learning
    • Collaboration and Teamwork
    • Cultural Sensitivity
  • Marketing
  • Finance
  • Economics
    • Introduction to Managerial Economics >
      • Basic Techniques
      • The firm: Stakeholders, Objectives and Decision Issues
      • Demand and Revenue Analysis >
        • Demand Estimation and Forecasting
        • Demand Elasticity
        • Demand Concepts and Analysis >
          • Formulation and Solution of Binary Optimization Problems
      • Scope of Managerial Economics
    • Prodution and Cost Analysis >
      • Production Function
      • Estimation of Production and Cost Functions
      • Cost Concepts and Analysis I
      • Cost Concepts and Analysis II
    • Pricing Decisions >
      • Pricing strategies >
        • Adding Optimization to a Spreadsheet Model
      • Market structure and microbes barriers to entry
      • Pricing under pure competition and pure monopoly
      • Pricing under monopolistic and oligopolistic competition
    • Narendra Modi Development Model of Gujarat
  • JBDON Golf
    • Digital Marketing Application of Optimization
  • Let's Talk
  • MBA Project Sharing
  • About Us
    • Good Read >
      • IIMC says PepsiCo CEO Indra Nooyi was an average student
      • India’s middle class figures in Fortune’s Top Ten list of those who matter
      • The Start-Up of you.
      • BUYING AND MERCHANDISING
      • HUMAN RESOURCE MANAGEMENT
      • Do You Suffer From Decision Fatigue?
      • New Page
      • About social media and web 2.0
      • Building Your Own Start-up Technology Company, Part 1
      • Building Your Own Start-up Technology Company, Part 2
      • Building Your Own Start-up Technology Company, Part 3
      • Building Your Own Start-up Technology Company, Part 4
      • Renewable energy is no longer alternative energy
      • What Makes an Exceptional Social Media Manager?
      • The Forgotten Book that Helped Shape the Modern Economy
      • Home
      • How to Think Creatively
      • A Lighthearted Looks at Project Management and Sports Analogies
      • Why Trust Matters More Than Ever for Brands
  • CET Knowledge Zone
    • Tips From JBIMS Students >
      • Prasad Sawant
      • Chandan Roy
      • Ram
      • Ashmant Tiwari
      • Rajesh Rikame
      • Ami Kothari
      • Ankeet Adani
      • Sonam Jain
      • Marketing Analytics and Customer Satisfaction
      • Mitesh Thakker
      • Tresa Sankoorikal
    • Speed Techniques
    • CET Workshops
  • Untitled
  • New Page
    • Cluster analysis using excel and excel miner
    • Chance Constraints and Value At Risk
    • Adding Uncertainty to a Spreadsheet Model
  • Adidas

Tresa Sankoorikal, JBIMS Batch of 2011

Picture
With less than three weeks to go for the D-Day, I am sure that there must be a lot of queries cropping up in this year’s Bajaj aspirants’ minds. Well, first of all I would like to quell the myth that CET is an easy test to crack. Though the level of difficulty is lower than that of CAT, the sheer level of competition is enough to give anyone the jitters- a meagre 120 seats at JBIMS, with more than one lakh aspirants! Here’s where the level of preparation comes in….For those who have taken other entrance tests such as CAT, XAT, FMS, etc. there is just a bit of fine tuning that is required. And for those who haven’t, there’s still no reason to worry as long as you have been putting in the requisite effort and continue to do so.

Especially for those who suffer from ‘Arithmophobia’, CET is your best bet to get into one of the top B-schools in India, as it tests candidates more in the application of logic than Mathematics. Personally for me, Visual Reasoning was something I had to struggle with. Hence, I would always skip the VR questions and solve the ones I could only after I was done with the rest of the paper.

Another common myth with respect to CET is that speed is more important than accuracy. Yes, speed is very important as there are 200 questions to be solved in just 150 minutes, but accuracy is just as important. The equation between the two would vary from person to person, but to believe that accuracy can be compromised at the cost of speed would be grossly wrong. Speed was never my forte, but a decent number of attempts with a high level of accuracy got me a score of 155 in my written test, which translated into a 99.98 percentile.

My advice to this year’s Bajaj aspirants:
1. Solve one paper a day, but most importantly analyze the paper to find out where you have gone wrong. Check if these are conceptual errors (e.g. related to a particular topic like Syllogisms), or silly mistakes (e.g. calculation errors).
In case of conceptual errors, sit down with a few papers & solve all the questions related to that topic till you get it right. If you are making too many silly mistakes, then you probably need to slow down a bit and concentrate more on accuracy than on speed.
When you solve the next paper, check and see if you are repeating mistakes made in the previous paper.

2. Solve papers from different coaching classes so that you have a feel of all the possible types of questions that you could come across, and how you are best able to tackle different combinations of these questions.

3. If you come across any question that looks like it will take more than 45 seconds, skip it in the first go and come back to it if you have time at the end.

4. Practise different strategies in your mock papers. Decide what works best for you and implement that in the final paper.

5. Don’t random mark as far as possible. Take calculated guesses if time permits i.e. narrow down your options to 2 or 3 and then random mark.

6. Be careful while marking in the OMR. Since you are required to mark with a pen, these minor things count, especially considering that a difference of even 1 or 2 marks could result in you not securing a seat in your dream college.

7. Try and score as much as possible in the written test so that your GD/PI will be smooth sailing. Easier said than done, I know!

8. Last but not the least, stay calm & give it your best. You still have time-it’s upto you to make the most of it!

All the best. Hope to see you next year at JBIMS!

Powered by Create your own unique website with customizable templates.
  • Home
  • Applied Analytics
    • Analytics for Decision Making >
      • What is Cluster Analysis
      • Data Reduction and Unsupervised Learning
      • Preparing Data and Measuring Dissimilarities
      • Hierarchical and k-Means Clustering
      • Defining Output Variables and Analyzing the Results
      • Using Historical Data to Model Uncertainty
      • Models with Correlated Uncertain Variables
      • Creating and Interpreting Charts
      • Using Average Values versus Simulation
      • Optimization and Decision Making
      • Formulating an Optimization Problem
      • Developing a Spreadsheet Model
      • Adding Optimization to a Spreadsheet Model
      • What-if Analysis and the Sensitivity Report
      • Evaluating Scenarios and Visualizing Results to Gain Practical Insights
      • Digital Marketing Application of Optimization
      • Advanced Models for Better Decisions
      • Business Problems with Yes/No Decisions
      • Formulation and Solution of Binary Optimization Problems
      • Metaheuristic Optimization
      • Chance Constraints and Value At Risk
      • Simulation Optimization
    • Analytics for Marketing >
      • Marketing Analytics and Customer Satisfaction
      • Customer Satisfaction
      • Measurements and Scaling Techniques – Introduction
      • Primary Scales of Measurement
      • Comparative Scaling
      • Non-Comparative Scaling
      • Experiment Design: Controlling for Experimental Errors
      • A/B Testing: Introduction
      • A/B Testing: Types of Tests
      • ANOVA – Introduction
      • Example -Inspect Spray and Tooth Growth
      • Logit Model - Binary Outome and Forecastign linear regression
      • Text Summarization
      • Social media Microscope
      • N-Gram - Frequcy Count and phase mining
      • LDA Topic Modeling
      • Machine-Learned Classification and Semantic Topic Tagging
    • Data Engine >
      • Understanding The Growth Of Data
      • Evaluating Methods Of Data Access
      • Communication journey
      • Data Journey
      • Planning for data visualisation
      • Visualisation Component
      • Content Connection and Chart Legitibility
    • Customer Insights >
      • Introduction
      • What is Descriptive Analytics?
      • Survey Overview
      • Net Promoter Score and Self-Reports
      • Survey Design
      • Passive Data Collection
      • Media Planning
      • Data Visualization
      • Causal Data Collection and Summary
      • Asking Predictive Questions
      • Regression Analysis
      • Data Set Predictions
      • Probability Models
      • Results and Predictions
      • Perspective Analytics (Maximize Revenue and Market Structure Competitions)
    • Analytics for Advance Marketing >
      • Visualisation and statistics (Political Advertising,Movie Theater and Data Assembly)
      • Excel Analysis of Motion Picture Industry Data
      • Displaying Conditional Distributions
      • Analyzing Qualitative Variables
      • Steps in Constructing Histograms
      • Common Descriptive Statistics for Quantitative Data
      • Regression-Based Modeling
      • Customer Analytics
      • Illustrating Customer Analytics in Excel
      • Customer Valuation Excel Demonstration
  • Soft Skills
    • Adaptability
    • Confidence
    • Change Management
    • Unlearning and Learning
    • Collaboration and Teamwork
    • Cultural Sensitivity
  • Marketing
  • Finance
  • Economics
    • Introduction to Managerial Economics >
      • Basic Techniques
      • The firm: Stakeholders, Objectives and Decision Issues
      • Demand and Revenue Analysis >
        • Demand Estimation and Forecasting
        • Demand Elasticity
        • Demand Concepts and Analysis >
          • Formulation and Solution of Binary Optimization Problems
      • Scope of Managerial Economics
    • Prodution and Cost Analysis >
      • Production Function
      • Estimation of Production and Cost Functions
      • Cost Concepts and Analysis I
      • Cost Concepts and Analysis II
    • Pricing Decisions >
      • Pricing strategies >
        • Adding Optimization to a Spreadsheet Model
      • Market structure and microbes barriers to entry
      • Pricing under pure competition and pure monopoly
      • Pricing under monopolistic and oligopolistic competition
    • Narendra Modi Development Model of Gujarat
  • JBDON Golf
    • Digital Marketing Application of Optimization
  • Let's Talk
  • MBA Project Sharing
  • About Us
    • Good Read >
      • IIMC says PepsiCo CEO Indra Nooyi was an average student
      • India’s middle class figures in Fortune’s Top Ten list of those who matter
      • The Start-Up of you.
      • BUYING AND MERCHANDISING
      • HUMAN RESOURCE MANAGEMENT
      • Do You Suffer From Decision Fatigue?
      • New Page
      • About social media and web 2.0
      • Building Your Own Start-up Technology Company, Part 1
      • Building Your Own Start-up Technology Company, Part 2
      • Building Your Own Start-up Technology Company, Part 3
      • Building Your Own Start-up Technology Company, Part 4
      • Renewable energy is no longer alternative energy
      • What Makes an Exceptional Social Media Manager?
      • The Forgotten Book that Helped Shape the Modern Economy
      • Home
      • How to Think Creatively
      • A Lighthearted Looks at Project Management and Sports Analogies
      • Why Trust Matters More Than Ever for Brands
  • CET Knowledge Zone
    • Tips From JBIMS Students >
      • Prasad Sawant
      • Chandan Roy
      • Ram
      • Ashmant Tiwari
      • Rajesh Rikame
      • Ami Kothari
      • Ankeet Adani
      • Sonam Jain
      • Marketing Analytics and Customer Satisfaction
      • Mitesh Thakker
      • Tresa Sankoorikal
    • Speed Techniques
    • CET Workshops
  • Untitled
  • New Page
    • Cluster analysis using excel and excel miner
    • Chance Constraints and Value At Risk
    • Adding Uncertainty to a Spreadsheet Model
  • Adidas