JBDON
  • Home
  • Applied Analytics
    • Analytics for Decision Making >
      • What is Cluster Analysis
      • Data Reduction and Unsupervised Learning
      • Preparing Data and Measuring Dissimilarities
      • Hierarchical and k-Means Clustering
      • Defining Output Variables and Analyzing the Results
      • Using Historical Data to Model Uncertainty
      • Models with Correlated Uncertain Variables
      • Creating and Interpreting Charts
      • Using Average Values versus Simulation
      • Optimization and Decision Making
      • Formulating an Optimization Problem
      • Developing a Spreadsheet Model
      • Adding Optimization to a Spreadsheet Model
      • What-if Analysis and the Sensitivity Report
      • Evaluating Scenarios and Visualizing Results to Gain Practical Insights
      • Digital Marketing Application of Optimization
      • Advanced Models for Better Decisions
      • Business Problems with Yes/No Decisions
      • Formulation and Solution of Binary Optimization Problems
      • Metaheuristic Optimization
      • Chance Constraints and Value At Risk
      • Simulation Optimization
    • Analytics for Marketing >
      • Marketing Analytics and Customer Satisfaction
      • Customer Satisfaction
      • Measurements and Scaling Techniques – Introduction
      • Primary Scales of Measurement
      • Comparative Scaling
      • Non-Comparative Scaling
      • Experiment Design: Controlling for Experimental Errors
      • A/B Testing: Introduction
      • A/B Testing: Types of Tests
      • ANOVA – Introduction
      • Example -Inspect Spray and Tooth Growth
      • Logit Model - Binary Outome and Forecastign linear regression
      • Text Summarization
      • Social media Microscope
      • N-Gram - Frequcy Count and phase mining
      • LDA Topic Modeling
      • Machine-Learned Classification and Semantic Topic Tagging
    • Data Engine >
      • Understanding The Growth Of Data
      • Evaluating Methods Of Data Access
      • Communication journey
      • Data Journey
      • Planning for data visualisation
      • Visualisation Component
      • Content Connection and Chart Legitibility
    • Customer Insights >
      • Introduction
      • What is Descriptive Analytics?
      • Survey Overview
      • Net Promoter Score and Self-Reports
      • Survey Design
      • Passive Data Collection
      • Media Planning
      • Data Visualization
      • Causal Data Collection and Summary
      • Asking Predictive Questions
      • Regression Analysis
      • Data Set Predictions
      • Probability Models
      • Results and Predictions
      • Perspective Analytics (Maximize Revenue and Market Structure Competitions)
    • Analytics for Advance Marketing >
      • Visualisation and statistics (Political Advertising,Movie Theater and Data Assembly)
      • Excel Analysis of Motion Picture Industry Data
      • Displaying Conditional Distributions
      • Analyzing Qualitative Variables
      • Steps in Constructing Histograms
      • Common Descriptive Statistics for Quantitative Data
      • Regression-Based Modeling
      • Customer Analytics
      • Illustrating Customer Analytics in Excel
      • Customer Valuation Excel Demonstration
  • Soft Skills
    • Adaptability
    • Confidence
    • Change Management
    • Unlearning and Learning
    • Collaboration and Teamwork
    • Cultural Sensitivity
  • Marketing
  • Finance
  • Economics
    • Introduction to Managerial Economics >
      • Basic Techniques
      • The firm: Stakeholders, Objectives and Decision Issues
      • Demand and Revenue Analysis >
        • Demand Estimation and Forecasting
        • Demand Elasticity
        • Demand Concepts and Analysis >
          • Formulation and Solution of Binary Optimization Problems
      • Scope of Managerial Economics
    • Prodution and Cost Analysis >
      • Production Function
      • Estimation of Production and Cost Functions
      • Cost Concepts and Analysis I
      • Cost Concepts and Analysis II
    • Pricing Decisions >
      • Pricing strategies >
        • Adding Optimization to a Spreadsheet Model
      • Market structure and microbes barriers to entry
      • Pricing under pure competition and pure monopoly
      • Pricing under monopolistic and oligopolistic competition
    • Narendra Modi Development Model of Gujarat
  • JBDON Golf
    • Digital Marketing Application of Optimization
  • Let's Talk
  • MBA Project Sharing
  • About Us
    • Good Read >
      • IIMC says PepsiCo CEO Indra Nooyi was an average student
      • India’s middle class figures in Fortune’s Top Ten list of those who matter
      • The Start-Up of you.
      • BUYING AND MERCHANDISING
      • HUMAN RESOURCE MANAGEMENT
      • Do You Suffer From Decision Fatigue?
      • New Page
      • About social media and web 2.0
      • Building Your Own Start-up Technology Company, Part 1
      • Building Your Own Start-up Technology Company, Part 2
      • Building Your Own Start-up Technology Company, Part 3
      • Building Your Own Start-up Technology Company, Part 4
      • Renewable energy is no longer alternative energy
      • What Makes an Exceptional Social Media Manager?
      • The Forgotten Book that Helped Shape the Modern Economy
      • Home
      • How to Think Creatively
      • A Lighthearted Looks at Project Management and Sports Analogies
      • Why Trust Matters More Than Ever for Brands
  • CET Knowledge Zone
    • Tips From JBIMS Students >
      • Prasad Sawant
      • Chandan Roy
      • Ram
      • Ashmant Tiwari
      • Rajesh Rikame
      • Ami Kothari
      • Ankeet Adani
      • Sonam Jain
      • Marketing Analytics and Customer Satisfaction
      • Mitesh Thakker
      • Tresa Sankoorikal
    • Speed Techniques
    • CET Workshops
  • Untitled
  • New Page
    • Cluster analysis using excel and excel miner
    • Chance Constraints and Value At Risk
    • Adding Uncertainty to a Spreadsheet Model
  • Adidas

​Understanding The Growth Of Data

90% of the world’s data has been generated in the last two years (as of 2018).
The below is a comparison of daily data creation. The data has been taken from a number of sources, and then dropped into this graphic, sizing the boxes to the relative size. It gives us good relative insight into how much data is being created, as well as a point of comparison to some offline data that will show us just how much is being produced.
 
The above are 2015 figures unless otherwise noted.
 
Brinker’s Martech Landscape
In August 2011, Scott Brinker of ChiefMartech charted logos of providers operating in the nascent business of “marketing technology” as a way to sort out the market. There were 150 such operators. By September 2012, when Brinker revisited his infographic, the number of firms operating in marketing technology had grown to 350. Then 1000. Three years later, the number had risen to 2000.
 
By 2016, the number had jumped to 3500 firms operating in the space – almost twice the number just 14 months before. By 2017, it grew more than 40% to reach 5000 companies and by 2018, nearly 7000 companies.
 
 
Thus, there has never been a time where understanding that data and knowing how to communicate with that data has ever been as important as it is today.
However, according to a study by McKinsey & Company, only 1% of the change that technology will introduce into our personal and professional lives has been realized and experienced. We are, thus, at the very beginning of the journey in understanding data and using it to communicate.
In conclusion,
  • We are living in the midst of a data explosion
  • Extraordinary amounts of useful, portable digital data are being generated each day
  • New companies (and industries) working with data are emerging at a rapid pace
  • We have only just begun to see the impact technology will have on our personal and professional lives
 
Powered by Create your own unique website with customizable templates.
  • Home
  • Applied Analytics
    • Analytics for Decision Making >
      • What is Cluster Analysis
      • Data Reduction and Unsupervised Learning
      • Preparing Data and Measuring Dissimilarities
      • Hierarchical and k-Means Clustering
      • Defining Output Variables and Analyzing the Results
      • Using Historical Data to Model Uncertainty
      • Models with Correlated Uncertain Variables
      • Creating and Interpreting Charts
      • Using Average Values versus Simulation
      • Optimization and Decision Making
      • Formulating an Optimization Problem
      • Developing a Spreadsheet Model
      • Adding Optimization to a Spreadsheet Model
      • What-if Analysis and the Sensitivity Report
      • Evaluating Scenarios and Visualizing Results to Gain Practical Insights
      • Digital Marketing Application of Optimization
      • Advanced Models for Better Decisions
      • Business Problems with Yes/No Decisions
      • Formulation and Solution of Binary Optimization Problems
      • Metaheuristic Optimization
      • Chance Constraints and Value At Risk
      • Simulation Optimization
    • Analytics for Marketing >
      • Marketing Analytics and Customer Satisfaction
      • Customer Satisfaction
      • Measurements and Scaling Techniques – Introduction
      • Primary Scales of Measurement
      • Comparative Scaling
      • Non-Comparative Scaling
      • Experiment Design: Controlling for Experimental Errors
      • A/B Testing: Introduction
      • A/B Testing: Types of Tests
      • ANOVA – Introduction
      • Example -Inspect Spray and Tooth Growth
      • Logit Model - Binary Outome and Forecastign linear regression
      • Text Summarization
      • Social media Microscope
      • N-Gram - Frequcy Count and phase mining
      • LDA Topic Modeling
      • Machine-Learned Classification and Semantic Topic Tagging
    • Data Engine >
      • Understanding The Growth Of Data
      • Evaluating Methods Of Data Access
      • Communication journey
      • Data Journey
      • Planning for data visualisation
      • Visualisation Component
      • Content Connection and Chart Legitibility
    • Customer Insights >
      • Introduction
      • What is Descriptive Analytics?
      • Survey Overview
      • Net Promoter Score and Self-Reports
      • Survey Design
      • Passive Data Collection
      • Media Planning
      • Data Visualization
      • Causal Data Collection and Summary
      • Asking Predictive Questions
      • Regression Analysis
      • Data Set Predictions
      • Probability Models
      • Results and Predictions
      • Perspective Analytics (Maximize Revenue and Market Structure Competitions)
    • Analytics for Advance Marketing >
      • Visualisation and statistics (Political Advertising,Movie Theater and Data Assembly)
      • Excel Analysis of Motion Picture Industry Data
      • Displaying Conditional Distributions
      • Analyzing Qualitative Variables
      • Steps in Constructing Histograms
      • Common Descriptive Statistics for Quantitative Data
      • Regression-Based Modeling
      • Customer Analytics
      • Illustrating Customer Analytics in Excel
      • Customer Valuation Excel Demonstration
  • Soft Skills
    • Adaptability
    • Confidence
    • Change Management
    • Unlearning and Learning
    • Collaboration and Teamwork
    • Cultural Sensitivity
  • Marketing
  • Finance
  • Economics
    • Introduction to Managerial Economics >
      • Basic Techniques
      • The firm: Stakeholders, Objectives and Decision Issues
      • Demand and Revenue Analysis >
        • Demand Estimation and Forecasting
        • Demand Elasticity
        • Demand Concepts and Analysis >
          • Formulation and Solution of Binary Optimization Problems
      • Scope of Managerial Economics
    • Prodution and Cost Analysis >
      • Production Function
      • Estimation of Production and Cost Functions
      • Cost Concepts and Analysis I
      • Cost Concepts and Analysis II
    • Pricing Decisions >
      • Pricing strategies >
        • Adding Optimization to a Spreadsheet Model
      • Market structure and microbes barriers to entry
      • Pricing under pure competition and pure monopoly
      • Pricing under monopolistic and oligopolistic competition
    • Narendra Modi Development Model of Gujarat
  • JBDON Golf
    • Digital Marketing Application of Optimization
  • Let's Talk
  • MBA Project Sharing
  • About Us
    • Good Read >
      • IIMC says PepsiCo CEO Indra Nooyi was an average student
      • India’s middle class figures in Fortune’s Top Ten list of those who matter
      • The Start-Up of you.
      • BUYING AND MERCHANDISING
      • HUMAN RESOURCE MANAGEMENT
      • Do You Suffer From Decision Fatigue?
      • New Page
      • About social media and web 2.0
      • Building Your Own Start-up Technology Company, Part 1
      • Building Your Own Start-up Technology Company, Part 2
      • Building Your Own Start-up Technology Company, Part 3
      • Building Your Own Start-up Technology Company, Part 4
      • Renewable energy is no longer alternative energy
      • What Makes an Exceptional Social Media Manager?
      • The Forgotten Book that Helped Shape the Modern Economy
      • Home
      • How to Think Creatively
      • A Lighthearted Looks at Project Management and Sports Analogies
      • Why Trust Matters More Than Ever for Brands
  • CET Knowledge Zone
    • Tips From JBIMS Students >
      • Prasad Sawant
      • Chandan Roy
      • Ram
      • Ashmant Tiwari
      • Rajesh Rikame
      • Ami Kothari
      • Ankeet Adani
      • Sonam Jain
      • Marketing Analytics and Customer Satisfaction
      • Mitesh Thakker
      • Tresa Sankoorikal
    • Speed Techniques
    • CET Workshops
  • Untitled
  • New Page
    • Cluster analysis using excel and excel miner
    • Chance Constraints and Value At Risk
    • Adding Uncertainty to a Spreadsheet Model
  • Adidas